

Сухие трансформаторы с литой изоляцией

ОГЛАВЛЕНИЕ

4	Сухие трансформаторы с литой изоляцией TRAFO ELETTRO
5	Качество, Охрана окружающей среды, Безопасность, Здоровье и Тесты
6	Применение трансформаторов с литой изоляцией
8	Сухие трансформаторы для тяговых подстанций с литой изоляцией
9-10	Номинальный ряд TRAFO ELETTRO
11	Преимущества сухих трансформаторов с литой изоляцией TRAFO ELETTRO
12	Особенности производства
13	Условия окружающей среды
14	Обмотки ВН
16	Обмотки НН
17	Магнитный сердечник
18	Устройства контроля температуры и вентиляции
19	Кожухи TRAFO ELETTRO
20	Различные типы присоединений TRAFO ELETTRO
21	Установка
22	Технические данные и размеры
30	Сухие трансформаторы с литой изоляцией HH/HH TRAFO ELETTRO
31	Токоограничивающие реакторы TRAFO ELETTRO
32	Сервис на объекте TRAFO FLETTRO

Сухие трансформаторы с литой изоляцией TRAFO ELETTRO

TRAFO ELETTRO является специалистом в разработке и производстве сухих трансформаторов с литой изоляцией, выполненной из эпоксидной смолы, залитой в вакууме.

Компания начала свою деятельность в 1969 году как малое предприятие и за эти годы выросла в лидеры в своей отрасли. Мы имеем опыт в производстве трансформаторов свыше 40 лет.

Основная стратегия - упор на НИОКР и постоянное повышение квалификации персонала. TRAFO ELETTRO рассчитывает на своих сотрудников. Консолидированная компетенция, глубокий опыт и командный дух, выращенный за годы, являются свидетельствами надежности для Клиента.

Уровень технологии, достигнутый за последние годы, как и накопленный опыт в технологических решениях, является оптимальным для производства высококачественной продукции.

Соответствие национальным и международным стандартам, классам E2, C2 и F1 подтверждает, что трансформаторы TRAFO ELETTRO могут быть использованы в экстремальных условиях окружающей среды.

Сервис - Клиент получает высочайших класс обслуживания в пред- и постпродажный период. Четкие и компетентные ответы, конкретные сроки поставки, любые решения технических задач являются основой нашей работы.

Качество, Охрана окружающей среды, Безопасность, Здоровье и Тесты

Качество - наличие сертификата UNI EN ISO 9001:2008 подтверждает, что TRAFO ELETTRO производит продукцию в соответствии с требуемыми стандартами. Тем не менее, TRAFO ELETTRO не рассматривает сертификацию как достигнутую цель. На самом деле качество - результат, который мы достигаем каждый день, на каждой производственной операции.

Охрана окружающей среды - TRAFO ELETTRO долгие годы следует политике компании, дружелюбной окружающей среде. Сертификация по ISO 14001:2004 являлась необходимой для последующей оптимизации внутренних процессов. TRAFO ELETTRO на переднем крае борьбы за снижение выбросов в окружающую среду при производстве. За два последних года мы снизили их количество более, чем на 20%.

Безопасность и здоровье - наше внимание обращено на защиту здоровья и природы. Безопасность работников TRAFO ELETTRO и клиентов - наша задача номер один. Сертификат OHSAS 18001:2007 - наша следующая задача на 2013 год.

Испытания и контроль - процесс производства TRAFO ELETTRO полностью контролируем. На каждой фазе производства осуществляется штрих-кодирование, все процессы можно полностью отследить. 100% нашей продукции тестируется в лаборатории контроля качества, оборудованной

высокотехнологичными инструментами. Клиент по желанию может принять участие в испытаниях трансформатора, в абсолютно безопасной обстановке.

Сертификация продукции - TRAFO ELETTRO также проводит испытания силами сторонних органов - ГОСТ, CESI, Университет Падовы - некоторые наши партнеры в сертификации сухих трансформаторов с литой изоляцией.

Стойкость к воздействию окружающей среды (E2, C2, F1) - TRAFO ELETTRO предлагает иновационный продукт. Обмотки ВН выполнены для работы в экстремальных условиях окружающей среды. Самозатухающие, огнестойкие и обладающие низкими потерями, они произведены в соответствии со стандартом HDL 464 S1 1988.

Соответствие стандартам

МЭК 60076-11: Сухие трансформаторы МЭК 60076-1: Силовые трансформаторы

МЭК 60076-3: Классы изоляции

МЭК 60270: Измерение уровня частичных разрядов

Применение трансформаторов с литой изоляцией

Специальная конструкция трансформаторов TRAFO ELETTRO удовлетворяет все нужды клиентов и находит идеальное применние во всех секторах, где имеется высокая потребность в электроэнергии.

Различные области применения - такие, как: системы распределения электроэнергии, "зеленая энергия" (когенерация, фотогальваника, биогаз и ветер), преобразование энергии (преобразователи), тяговая нагрузка (железная дорога) и прочие специальные нужды.

Типовое применение сухих трансформаторов с литой изоляцией

Объекты инфраструктуры

- * аэропорты
- * военные объекты
- * плавучие нефтяные платформы

Промышленность и сфера обслуживания

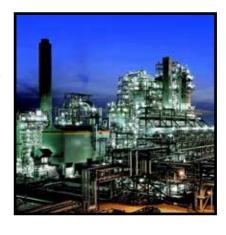
- * механическое производство
- * бумажные фабрики
- * химическое производство
- * литейное производство
- * супермаркеты
- * больницы
- * школы
- * коммерческие центры
- * центры управления

Преобразование электроэнергии

- * проводящие модули
- * железная дорога и метрополитен
- * системы подъема
- * индукционные модули
- * сварочные линии

Производство электроэнергии

- * повышающие трансформаторы для установок фотогальваники (солнечные батареи)
- * производство биогаза
- * системы когенерации
- * ветряные установки



Инфраструктура, производство и сфера обслуживания

- * надежные решения со стандартными потерями
- * увеличенный срок службы от 3 до 5 лет (снижен уровень частичных разрядов на 50%)
- * простота в установке (инновационный дизайн и оборудование)
- * надежная эксплуатация в специальных условиях окружающей среды
- * обслуживание сокращено до минимума
- * полная защита от влажности и пыли (с кожухом)
- * нет необходимости в специальных строительных работах
- * дружелюбны к окружающей среде

Преобразование электроэнергии

- * отличные характеристики для изделий с низкими потерями
- * возможность применения с системой РПН (опыт TRAFO ELETTRO)
- * увеличенный срок службы от 3 до 5 лет (снижен уровень частичных разрядов на 50%)
- * легкость в установке (инновационный дизайн и оборудование)
- * надежная эксплуатация в специальных условиях окружающей среды
- * обслуживание сокращено до минимума
- * полная защита от влажности и пыли (с кожухом)
- * нет необходимости в специальных строительных работах
- * дружелюбны к окружающей среде

Производство электроэнергии в области "зеленой энергии"

- * отличные характеристики для изделий с низкими потерями
- * Меньшие размеры (опыт TRAFO ELETTRO)
- * малый уровень шума
- * увеличенный срок службы от 3 до 5 лет (снижен уровень частичных разрядов на 50%)
- * легкость в установке (инновационный дизайн и оборудование)
- * обслуживание сокращено до минимума
- * полная защита от влажности и пыли (с кожухом)
- * нет необходимости в специальных строительных работах

ПРИМЕЧАНИЕ - также возможно применение специальных аксессуаров - вентиляторов охлаждения, ОПН, виброгасители и т.п.

Сухие трансформаторы для тяговых подстанций с литой изоляцией

Компания TRAFO ELETTRO
Service специализируется так
же на производстве тяговых
трансформаторов мощностью
от 100кВА до 16 МВА с
номинальным напряжением от
200кВ, предназначенных[для
преобразования напряжения
контактной сети железных дорог,
метро в напряжение цепей тяговых
двигателей и собственных нужд
тяговых агрегатов электровозов
переменного тока.

Достоинства тяговых трансформаторов

- * Учтены конструктивные особенности для работы с нагрузкой на постоянном токе;
- * Номинальное напряжение низкой стороны 0,258кВсоответствует выпрямленному напряжению Ud=600В (может быть иным в зависимости от нагрузки);

Основные свойства:

- * Стойкость к пусковым токам нагрузки.
- * Предназначен для работы на выпрямленную нагрузку.
- * Стойкость к высшим гармоникам от выпрямляемых схем.
- * Повышенный класс изоляции.

Номинальный ряд TRAFO ELETTRO

Стандартные распределительные сухие трансформаторы с литой изоляцией TRAFO ELETTRO имеют номинальный ряд от 50 до 3150 кВА. Специальные трансформаторы возможно изготовить до 20 МВА, с номинальным напряжением до 36 кВ. Вторичные напряжения могут быть любыми по запросу. Также возможно изготовить трансформаторы с двойной первичной и\или вторичной обмоткой.

Трансформаторы по запросу и специального исполнения - специализация TRAFO ELETTRO. Наш технический отдел обрабатывает каждый запрос для предложения оптимального решения.Консолидированная компетенция, глубокий опыт и командный дух, выращенный за годы, являются свидетельствами надежности для Клиента.

Аксессуары, включенные в стандартную поставку

Шпилька присоединительная с гайкой и шайбами M12 по стороне BH - 3 шт.

Контактные площадки HH с отверстиями для подключения, расположены сверху трансформатора - 3 шт.

Контактные пластины для регулирования напряжения (без нагрузки) - Зшт.

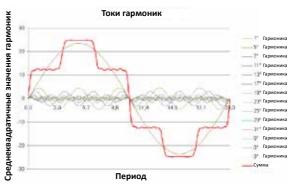
Номинальная табличка - 1 шт.

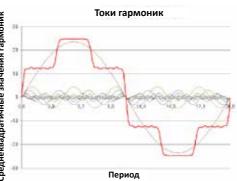
Заземляющие контакты из нержавеющей стали (UNEL 06131-71) - 2 шт.

Термодатчики РТ100, установленные в обмотках HH - 3 шт.

Реле контроля температуры - 1 шт.

Распаячная коробка для подключения термодатчиков - 1 шт. Каретка для перемещения трансформатора с 4-мя двунаправленными роликами - 1 шт.


Рым-болты для подъема трансформатора - 4 шт.


Протокол испытаний - 1 шт.

Инструкция по монтажу и эксплуатации - 1 шт.

Декларация соответствия - 1 шт.

Аксессуары, не включенные в стандартную поставку

Подключение ВН типа Elastimod - подвижная и фиксированная части -3 шт.

Защитный кожух ІР - 1 шт.

Ограничители перенапряжения ВН - 3 шт.

Вентиляторы для охлаждения со щитом управления - 2 шт.

Виброгасители - 4 шт.

Запасной набор термодатчиков PT100 - 3 шт.

Дополнительные датчики РТ100 для сердечника - 1

Контакты предупреждения и срабатывания реле для термодатчиков РТС - 3 шт.

Цифровое реле контроля температуры с последовательным портом для удаленного управления - 1 шт.

Аналоговый термометр сконтактами предупреждения и срабатывания - 1 шт.

Электростатические экраны между первичной и вторичной обмотками - 3 шт.

Заземляющее устройство на стороне ВН - 3 шт.

Регулирование под нагрузкой

Как правило, стандартный номинальный ряд сухих трансформаторов с литой изоляцией TRAFO ELETTRO предлагается со степенью защиты IP00. По запросу возможен расчет и изготовление защитных кожухов со степенями защиты от IP21 до IP44 (с дополнительными вентиляторами).

Сухие трансформаторы с литой изоляцией TRAFO ELETTRO, как правило, поставляются с протоколом испытаний, в котором отражены стандартные испытания. Стоимость типовых испытаний рассчитывается отдельно. Также возможно присутствие заказчика при испытаниях в лаборатории (оговаривается отдельно).

Приемо-сдаточные испытания (в соответствии с МЭК EN60076-11)

Измерение коэффициента трансформации и группы соединений

Испытание на электрическую прочность Измерение уровня частичных разрядов Измерение тока и потерь XX Измерение сопротивления обмоток Проверка размеров, аксессуаров и работоспособности

Типовые и специльаные испытания (по запросу, стоимость согласовывается)

Тест грозовым перенапряжением по стандарту EN 60076-3 Испытание на нагрев по стандарту EN 60076-2 Измерение звуковой мощности и звукового давления по стандарту EN 60096-10 Тест K3 по стандарту EN 60076-5

Преимущества сухих трансформаторов с литой изоляцией TRAFO ELETTRO

Трансформаторы с литой изоляцией TRAFO ELETTRO - идеальный выбор для всех нужд.

Простота установки

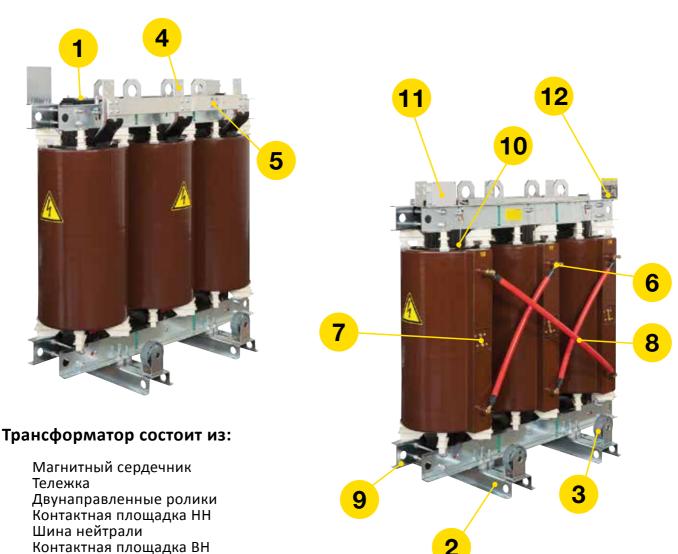
- возможность установки внутри зданий, включая места, посещаемые людьми
- снижение общих размеров

Снижение урона окружающей среде

- низкий уровень пожароопасности
- нет риска утечки изолирующей жидкости в окружающую среду
- есть номинальный ряд трансформаторов со "сниженными потерями" (энергосбережение)
- возможность переработки материалов после истечения срока службы

Снижение урона окружающей среде

- нет необходимости в обслуживании (кроме периодических проверок)
- возможность увеличения выдаваемой мощности за счет применения специальных систем вентиляции



Особенности производства

В производстве сухих трансформаторов с литой изоляцией TRAFO ELETTRO происходит постоянный прогресс. Высокое качество технических решений - характеристика нашей продукции. Горячекатаная сталь сердечника и стяжек гарантирует долгий срок службы, даже в условиях загрязненной окружающей среды.

Наши сухие трансформаторы могут быть выполнены с двойной первичной и вторичной обмотками. Это наше ноу-хау, основанное на более чем сорокалетнем опыте.

1.

2. 3.

4.

5.

6.

7.

8. 9.

10.

11. 12. Регулирование без напряжения

Термодатчики РТ100 для обмоток

Шина ВН "треугольник"

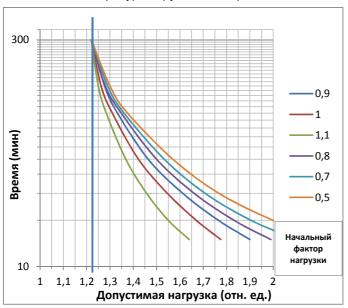
Заземляющая клемма

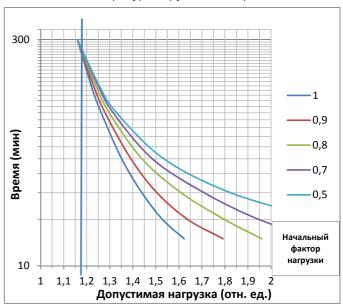
Номинальная табличка

Отпаячная коробка

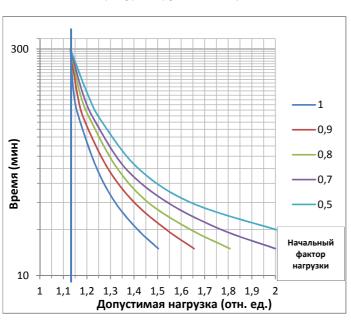
Условия окружающей среды

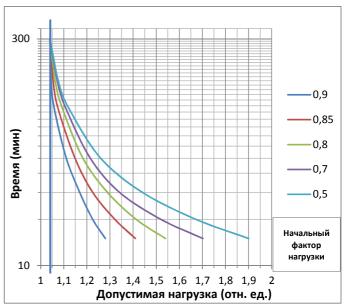
Все трансформаторы, производимые TRAFO ELETTRO, соответствуют стандарту МЭК 60076-11 (HDL 464-S1 1988), с самозатухающими характеристиками. Вся продукция производится в соответствии с вышеприведенными стандартами.


воз	ытания на действие ужающей среды	Климатические испытания	Климатические испытания
EO	Незначительный уровень загрязнения, отсутствие конденсации. Установка внутри чистого сухого помещения.	Трансформатор может работать при температуре окружающей среды не менее -5°С, но может храниться и транспортироваться при температурах до -25°С	F0 Нет риска возникновения огня и мер предосторожности для ограничения возгорания
E1	Случайная конденсация и возможно загрязнение в малых объемах	Трансформатор может работать, храниться и перевозиться при температурах до -25°C	сниженная возгораемость. Огонь должен быть самозатухающим за определенный период времени.
E2	Существенное загрязнение и конденсация		


Кривые нагрузки при нормальных условиях

Значения перегрузок относятся к ежедневной средневзвешенной температуре окружающей среды, как показано в руководстве по нагрузкам МЭК 905, и являются функцией изначального коэффициента нагрузки


Температура окружающей среды 0°С


Температура окружающей среды 10°C

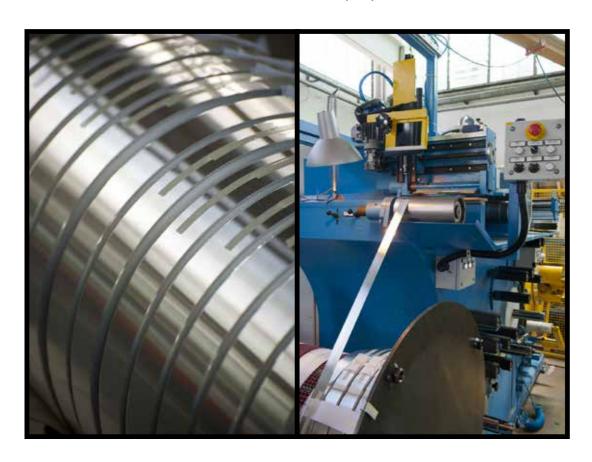
Температура окружающей среды 20°С

Температура окружающей среды 30°С

Пример:

При работе трансформатора 24 часа при 70% мощности (изначальный коэффициент нагрузки 0,7); трансформатор может выдать 126% своей мощности на 30 минут без снижения срока службы.

Обмотки ВН


Обмотки ВН производятся на автоматизированных намоточных машинах последнего поколения. Они изготовлены из слоев алюминиевой фольги, соединенных последовательно, закругленные и изолированные полиэфирной пленкой. Также возможно изготовление обмоток из эмалированного провода, намотанного в полуавтоматическом режиме.

Автоматическое компьютеризированное оборудование позволяет сохранять постоянность и равномерность укладки алюминиевых полос фольги и изоляционной пленки, а также их механическое напряжение. Как только обмотка готова, вся конструкция оборачивается в жесткую сетку из стекловолокна и после соотвествующего цикла сушки все обмотки заливаются в вакууме эпоксидной смолой класса F, смешанной с кварцем и тригидратом алюминия.

Благодаря политике постоянной модернизации и нашему многолетнему опыту, мы достигаем высокого уровня проникновения смолы. Кроме того, посредством значений уровня вакуума, времени нагрева, температурным циклам, управляемым программно, мы производим надежный и высококачественный продукт, обеспечивающий крайне низкий уровень частичных разрядов.

Каждое изделие подвергается калориметрическому анализу для проверки однородности. Регуляторы РБВ находятся точно по центру катушки и различные положения регуляторов выполнены посредством латунных мостиков.

Стандартные залитые вакуумом обмотки имеют диапазон регулирования значений в пределах \pm 2 * 2,5%. Возможно изменение этих значений по запросу клиента.

Первичные обмотки высокого напряжения (обмотки ВН) могут быть изготовлены в различном исполнении: имеющие только один номинал входного напряжения или специального исполнения с двойным номиналом напряжения обмоток высокой стороны. Это позволяет использовать один трансформатор в сетях с различным напряжением подводящей линии (питающей сети), например в сети напряжением 6кВ и сети напряжением 10кВ.

Данное исполнение позволяет избежать затрат при планируемой модернизации сети электроснабжения (например увеличение напряжения сети с 6 кВ до 10 кВ либо с 10 кВ до 20 кВ), так как позволяет переключить трансформатор на более высокий номинал входного напряжения избежав таким образом необходимости покупки другого трансформатора и связанных с этим пуско-наладочных работ.

Часто запрашиваемые исполнения: 6 и 10 кВ, 6 и 20 кВ, 10 и 20 кВ. По запросу TRAFO ELETTRO может изготовить трансформатор с любыми сочетаниями входного напряжения высокой стороны (до 36кВ) отвечающих требованиям заказчика.

Смена номинала напряжения высокой стороны трансформатора производится при помощи замыкания выделенных мостов, специально разработанных TRAFO ELETTRO Service для простой и удобной смены входного напряжения.

Обмотки НН

Обмотки НН производятся из фольги - электролитического алюминия (или меди), изолированных предварительно пропитанным материалом, с эпоксидной смолой класса F, и подвергаются нагреву в печи для формирования компактной структуры с достаточной стойкостью с силам K3, которые могут возникнуть на трансформаторе.

Контактные площадки НН производятся из алюминиевой шины путем полностью

автоматизированной сварки, и затем крепятся к верхнему ярму трансформатора соотвествующими проставками. По запросу возмождно изготовление медных обмоток или обмоток по спецификации клиента, к примеру, специальных контактных площадок для соединения с шинопроводом.

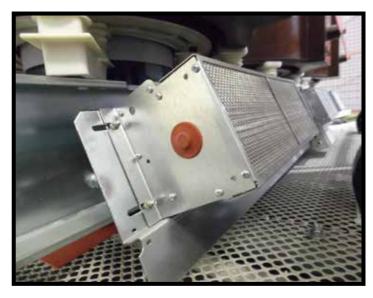
Как результат, обмотки НН наилучшим образом отвечают требованиям, предьявляемым тяжелыми условиями эксплуатации на объектах. Они могут выдерживать высокие механические нагрузки, возникающие при КЗ на линии или при техногенных проишествиях, также, как и при рисках пожара (благодаря их огнестойкости).



Магнитный сердечник

Магнитный сердечник производится из ламинированных слоев магнитноориентированной зернистой стали, изолированных Carlyte, типа step-lap или срезанных под углом, для снижения уровня звукового давления и потерь XX до минимально возможных значений.

Он скреплен ярмами из горячеоцинкованной стали с высокотемпературным защитным покрытием, для обеспечения высокой стойкости к перенапряжениям при КЗ и во время транспортировки.


Магнитный сердечник может быть изготовлен как из стандартных ламинированных слоев зернистой магнитной стали с низкими потерями, так и специальным, в зависимости от пожеланий клиента и в соответствии с проектом, разработанным нашим техническим отделом.

Устройства контроля температуры и вентиляции

Сухие трансформаторы с литой изоляцией TRAFO ELETTRO оборудованы в стандартной комплектации теермодатчиками типа PT100, находящимися в изолированных трубках, расположенных между обмотками НН и сердечником, в части трансформатора, имеющей самую высокую температуру. Эти датчики подключены к электронному устройству контроля температуры.

Электронное устройство контроля температуры в стандартной комплектации - реле DIEL MT200 lite, оно также может быть использовано для подачи сигнала на включение\отключения вентиляторов. Также трансформаторы можно снабдить вентиляторами уже после установки на место эксплуатации.

Тангенциальные вентиляторы способствуют кратковременной работе трансформаторов в короткий промежуток времени, в случае перегрузки. Температура для включения вентиляторов может быть установлена посредством реле контроля температуры. В качестве примера, трансформатор может работать с перегрузкой в 20% при условии установки дополнительных вентиляторов.

Также можно использовать электронное реле контроля температуры других производителей, например реле T154. В этом случае нет необходимости в смене термодатчиков.

Также возможно использование других термодатчиков по запросу клиента - термисторов РТС вместо РТ100. В этом случае используется реле контроля температуры МТ300.

Все сухие трансформаторы с литой изоляцией оборудованы отпаячной коробкой. Внутри расположены клеммные колодки для подключения датчиков и кабелей, а также

электрическая схема подключения, в зависимости от типа устройств.

Иногда требуется использование аналогового термометра с контактами предупреждения и срабатывания. Это устройство использовалось в прошлом, сейчас повсеместно распостранены электронные устройства.

Кожухи TRAFO ELETTRO

Как правило, трансформаторы TRAFO ELETTRO поставляются без кожуха. По запросу возможно оборудовать трансформаторы кожухами. Они имеют различные цвета и степени защиты (IP21-23-31-34-42). Они служат для предотвращения нежелательных контактов с трансформатором.

Основные характеристики следующие:

- укрепленная рама
- съемные панели
- самовентиляция

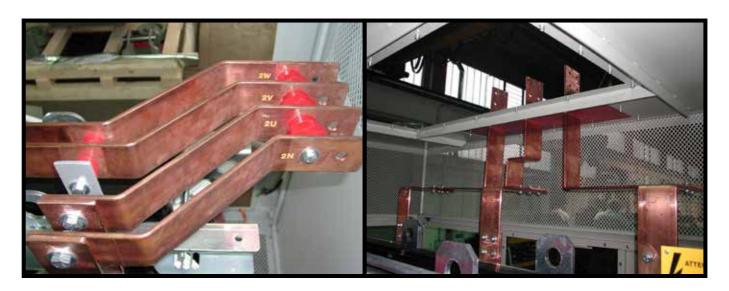
Как опция, TRAFO ELETTRO может поставлять кожуха в полностью разобранном виде.

Дополнительные аксессуары для кожуха (по запросу)

- 1. Специальное охлаждение
- 2. Замок AREL
- 3. Отпаячная коробка
- 4. Трансформаторы тока, установленные на крышу кожуха
- 5. Антиконденсатный нагреватель

Пример стандартного кожуха

Различные типы присоединений TRAFO ELETTRO


TRAFO ELETTRO может разработать и произвести различные типы присоединений для удовлетворения нужд клиента.

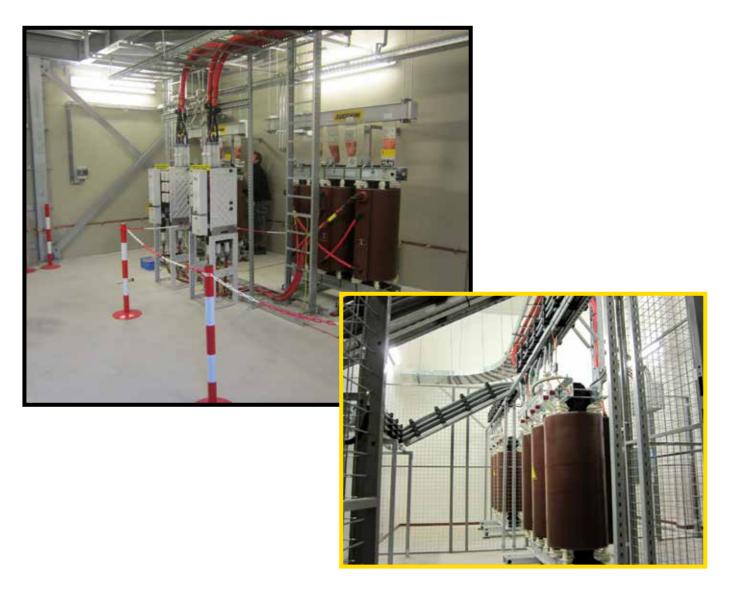
Примеры присоединений ВН, разработанных нами:

Присоединения ВН на правой стороне трансформатора

Присоединения ВН на крыше

Присоединения НН на левой стороне трансформатора

Присоединения НН на крыше кожуха


Установка

Сухие трансформаторы с литой изоляцией TRAFO ELETTRO просты и быстры в установке, благодаря оптимизированным внешним размерам и наличию подъемных рым-болтов. Не требуется специализированных строительных работ, надо просто следовать инструкциям, перечисленным в "Инструкции по монтажу и эксплуатации", которая поставляется с трансформатором.

Типовое исполнение для сухих трансформаторов - для внутренней установки. Место установки должно быть сухим и чистым, а также защищенным от проникновения влаги.

Температура в помещении трансформаторной подстанции должна находится в пределах от -25 до + 40 °C. В специфических условиях трансформатор может эксплуатироваться при температуре -40 °C.

Высота над уровнем моря для стандартных условий применения - максимально 1000 м. Для специального применения возможна разработка трансформаторов нашим техническим отделом.

TES-R

Insulation levels

Класс изоляции

7,2 kV 12 kV

Трансформатор с сухой изоляцией

Мощность W 360 490 600 650 760 890 1050 1250 1550 1850 2100 2550 3050 370 Потери на холостом ходу Load losses at 75°C W 2100 2900 3500 3700 4100 4800 5400 6500 7800 9000 10600 14500 16800 1870 Load losses at 120°C Torepu короткого замыкания при 120°C W 2600 3350 3900 4200 4650 5500 6100 7500 9000 10300 12000 18500 2100 Impedance voltage % 6 <td< th=""><th></th><th></th><th></th><th></th><th></th><th>шки</th><th>перист</th><th colspan="14">ELECTRICAL CHARACTERISTICS - Технические характерис</th></td<>						шки	перист	ELECTRICAL CHARACTERISTICS - Технические характерис													
Потери на холостом ходу Load losses at 175°C Потери короткого замыкания при т5°C Потери короткого замыкания при т20°C Потери короткого замыкания % 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3150	2500	2000	1600	1250	1000	800	630	500	400	315	250	200	160	100	kVA					
Load losses at 75°C Потери короткого замыкания при 75°C Потери короткого замыкания при 120°C Impedance voltage Напряжение короткого замыкания % 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 4550	3700	3050	2550 _.	2100	1850	1550	1250	1050	890	760	650	600	490	360	W					
Load losses at 120°C Потери короткого замыкания при 120°C Потери короткого замыкания при 120°С Impedance voltage % 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	24500	18700	16800	14500	10600	9000	7800	6500	5400	4800	4100	3700	3500	2900	2100	W	75°C	s at 75°C	Load losse		
Impedance voltage % 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	00 28000	21000	18500	16500	12000	10300	9000	7500	6100	5500	4650	4200	3900	3350	2600	W		Потери короткого замыкания при			
No load current % 1,8 1,7 1,5 1,5 1,4 1,3 1,2 1,2 1,1 1,0 1,0 0,9 0,9 0,8 Ток холостого хода Sound pressure level at 1 meter Звуковое давление на расстоянии 1 метр dBA 46 49 50 52 53 53 54 55 57 58 60 61 62 64 Sound power level dBA 59 62 63 65 67 68 69 70 71 73 74 76 79 81 Уровень шума Соябі = 1 3/4 97,60 97,93 97,99 98,29 98,48 98,60 98,73 98,78 98,84 98,93 98,99 98,95 99,02 99,17 99,12 99,17 99,12 99,17 99,12 99,17 99,12 99,17 99,12 99,15 99,12 99,17 99,22 99,23 99,28 99,	7	7	7	7	6,5	6	6	6	6	6	6	6	6	6	6	%					
Ток холостого хода Sound pressure level at 1 meter Звуковое давление на расстоянии 1 метр Sound power level Волиформет level Организация (Соябі = 0,9)	0,7	0,8	0.9	0.9	1.0	1.0	1.1	1.2	1.2	1.3	1.4	1.5	1.5	1.7	1.8	%	ния				
Sound power level dBA 59 62 63 65 67 68 69 70 71 73 74 76 79 81 Уровень шума Cosfi = 1 4/4 % 97,60 97,93 97,99 98,29 98,48 98,60 98,73 98,78 98,84 98,93 98,99 98,95 99,02 99,1 Efficiency 2/4 97,99 98,26 98,32 98,56 98,72 98,82 98,97 99,02 99,09 99,15 99,12 99,17 99,2 8 4/4 % 97,99 98,26 98,55 98,76 98,82 98,92 98,97 99,02 99,09 99,15 99,12 99,17 99,2 98,26 98,26 98,50 98,55 98,76 98,88 98,97 99,05 99,10 99,13 99,19 99,25 99,23 99,28 99,3 8 4/4	65	· ·							,	,	•		,								
Уровень шума Cosfi = 1 A/4 Begin and Begin	. 65	04	02	01	00	56	57	55	54	55	55	52	50	49	40	UDA	ии 1	метр			
Efficiency Cosfi = 1 3/4 97,99 98,26 98,32 98,56 98,72 98,82 98,97 99,02 99,09 99,15 99,12 99,17 99,2 99,23 99,23 99,28 99,3 99,3 99,10 99,13 99,19 99,25 99,23 99,28 99,3 99,3 99,10 99,10 99,13 99,19 99,25 99,23 99,28 99,3 99,28 99,3 99,10 99,1	82	81	,		•											dBA	4/4				
Cosfi = 0.9 3/4 % 97,77 98,07 98,13 98,41 98,58 98,69 98,80 98,86 98,91 98,99 99,05 99,02 99,08 99,1 КПД 4/4 97,02 97,42 97,50 97,87 98,11 98,25 98,41 98,49 98,56 98,66 98,75 98,69 98,77 98,8	5 99,23	99,11 99,25 99,33	99,17	99,12	99,15	99,09	99,02	98,97	98,92	98,82	98,72	98,56	98,32	98,26	97,99	%	3/4	Cosfi = 1	Efficiency		
КПД 4/4 97,02 97,42 97,50 97,87 98,11 98,25 98,41 98,49 98,56 98,66 98,75 98,69 98,77 98,8	6 99,15	99,01 99,16	99,08	99,02	99,05	98,99	98,91	98,86	98,80	98,69	98,58	98,41	98,13	98,07	97,77	%	3/4	Cosfi = 0,9			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 98,86	98,89 99,06	98,77	98,69	98,75	98,66	98,56	98,49	98,41	98,25	98,11	97,87		97,42	97,02	%	4/4	Cosfi = 0,8	кпд		
Cosfi = 1 4/4 2,258 1,976 1,915 1,649 1,473 1,373 1,254 1,206 1,150 1,076 1,056 1,147 1,081 0,99	0 1,020	99,17 0,990 3,087	1,081	1,147	1,056	1,076	1,150	1,206	1,254	1,373	1,473	1,649	1,915	1,976	2,258		4/4		Voltage drop		
Падение напряжения	3 3,908	3,883 4,905	3,959	4,012	3,720	3,518	3,578	3,624	3,662	3,756	3,835	3,972	4,174	4,219	4,426	%		Cosfi = 0,8	Падение напряжения		
Пусковой ток	10,5	10,5	10,5	11,0	11,0	11,5	11,5	12,0	12,0	12,5	12,5	13,0	13,0	13,5	13,5	le/In					
	0,40	0,35	0,30	0,25	0,20	0,18	0,16	0,14	0,13	0,12	0,11	0,10	0,10	0,09	0,09	sec.		Time costant le/ln Время пуска le/ln			
Short circuit current kA 2,4 3,8 4,8 6,0 7,6 9,6 12,0 15,2 19,2 24,1 27,8 33,0 41,2 51,0 Ток короткого замыкания	65,0	51,6	41,2	33,0	27,8	24,1	19,2	15,2	12,0	9,6	7,6	6,0	4,8	3,8	2,4	kA		Short circuit current			

COMPANY WITH MANAGEMENT SYSTEM CERTIFIED BY DNV

= ISO 9001= = ISO 14001=

The a/m technical data are based on:

Frequency 50 Hz

Max ambient temperature 40 $^{\circ}\text{C}$ HV/LV insulating materials F/F Winding over temperature 100 °C Efficiency based on losses at 75 °C

Tolerance according to EN 60076

Manufacturing according to Standards

Data and characteristics are not binding and can be changed without notice.

Приведенные технические данные действительны при:

Частота 50 Hz

Максимальная температура окружающей среды 40 °C ВВ/НВ класс изоляции F/F Повышение температуры обмоток 100 °C КПД при температуре до 75 °C Соответствует стандарту EN 60076

Произведено в соответствии со стандартом EN 60076-11

Технические данные и размеры могут быть изменены производителем без уведомления.

Data: 28/05/2013

Rev, 01

TES-R

Insulation levels

Класс изоляции

7,2 kV 12 kV

Трансформатор с сухой изоляцией

Power Мощность	kVA	100	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
				TRAN	SFORME	ER IP00/	Транс	форман	nop IP0	9						
L	mm	1060	1160	1240	1160	1250	1310	1310	1360	1430	1500	1540	1640	1760	1970	1970
W	mm	610	625	640	650	760	760	760	760	910	910	910	910	1220	1320	1320
Н	mm	1120	1200	1250	1370	1440	1480	1600	1600	1730	1780	1900	2060	2260	2240	2270
I	mm	520	520	520	520	670	670	670	670	820	820	820	820	1070	1070	1070
D	mm	100	100	100	125	125	125	125	125	125	125	160	160	200	200	200
Т	mm	40	40	40	40	40	40	40	40	40	40	60	60	70	70	70
Total weight / Общий вес	kg	450	640	730	850	1050	1200	1450	1650	2000	2300	2700	3250	3850	4650	5350
		ENCL	OSURE I	P 21 - 31	/ 3 ащи	пный к	ожух д	ля траі	нсформ	атора	IP 21 - 3	1				
L1	mm	1720	1720	1720	1790	1790	1900	1900	2000	2000	2120	2120	2300	2300	2670	2670
W1	mm	1050	1050	1050	1100	1100	1120	1120	1190	1190	1260	1260	1390	1390	1400	1400
H1	mm	1530	1530	1530	1760	1760	1960	1960	2090	2090	2260	2260	2490	2550	2610	2610
l1	mm	520	520	520	670	670	670	670	670	670	820	820	820	1070	1070	1070
Total weight / Общий вес	kg	280	280	280	315	315	315	370	370	370	450	450	450	550	550	550
LV-HV TERMINALS / BB - HB 660∂bi A mm 30 50 60 80 100 120																
Α	mm	3	0		5	0		60		80		100		12	20	
В	mm	1	5		2	5		15		20		25		3	0	
С	/	/	/	/	/	30		40		50			0			
Ø mm 13														17		
M	mm B							12							1	6
1U 1V 9	1 W		*			w w		A	æ	A B B	LV TEF	B	S / HB	вводы	A C	В
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				I1 L1					/	HV TE	RMINAL	S/BB	ВВОДЫ		

Dimensions and weight not binding / Предварительные размеры и вес

Power

Мощность No load losses

Потери на холостом ходу Load losses at 75°C

Потери короткого замыкания при 75°C Load losses at 120°C

Потери короткого замыкания при 120°C Impedance voltage

Напряжение короткого замыкания No load current

Ток холостого хода Sound pressure level at 1 meter

Звуковое давление на расстоянии 1 метр Sound power level

Уровень шума

Efficiency

кпд

Voltage drop

Паление

напряжения

Cosfi = 1

Cosfi = 0.9

Cosfi = 0.8

Cosfi = 1

Cosfi = 0.95

Cosfi = 0,9

Rush current

Пусковой ток Time costant le/In

Время пуска le/ln Short circuit current

Ток короткого замыкания

Cosfi = 0,8 4/4

TES-R

Insulation levels

Класс изоляции

24 kV

Трансформатор с сухой изоляцией

kVA

W

W

W

%

dBA

dBA

97,65

97.96

96,90

97.39

97.74

96,53

97.07

97.46

2,600

4,136

4,667

5.289

14,0

0,10

24

98,09

98.32

97,50

97,88

98.14

97,20

97.63

97.91

2,099

3,728

4,310

5.014

14,0

0,10

3.8

98,29

98.48

97,78

98,11

98.32

97,51

97.88

98.11

1,866

3,534

4,137

4.877

13,5

0,11

4.8

98,46

98.63

97,99

98,29

98.48

97,74

98.08

98.30

1,708

3,400

4,017

4,780

13,5

0,11

6.0

98,57

98.74

98,13

98.42

98.60

97,91

98.22

98.43

1,598

3,306

3,933

4.712

13,0

0,11

7.6

98,73

98.88

98,33

98.59

98.75

98,13

98.41

98.60

1,447

3,176

3,815

4.615

13,0

0,12

9.6

98,81

98.94

98,45

98.68

98.83

98,26

98.52

98.68

1,353

3,094

3,741

4.554

12,5

0,13

12.0

98,92

99.03

98,60

98,80

98.92

98,43

98.65

98.78

1,222

2,980

3,636

4.467

12,5

0,14

15.2

98,99

99.08

98,69

98.88

98.98

98,53

98.74

98.86

1,150

2,916

3,578

4.418

12,0

0,16

19.2

99,07

99.15

98,81

98.97

99.06

98,66

98.84

98.94

1,051

2,829

3,498

4.351

12,0

0,17

24.1

99,13

99.21

98,88

99.03

99.12

98,74

98.91

99.01

1,040

2,975

3,707

4.642

11,5

0,20

27.8

99,13

99.22

98,87

99.04

99.14

98,73

98.92

99.03

1,085

3,172

3,962

4.972

11,5

0,23

33.0

99,14

99.24

98,88

99.05

99.16

98,74

98.93

99.05

1,091

3,178

3,967

4.976

11,0

0,30

41.2

99,23

99.30

99,01

99.15

99.23

98,89

99.04

99.13

0,978

3,077

3,873

4.897

11,0

0,35

51.6

99,21

99.30

98,97

99,13

99.22

98,85

99.02

99.12

1,013

3,108

3,902

4.922

11,0

0,40

65.0

4/4

3/4 %

2/4

4/4

3/4 %

2/4

4/4

3/4 %

2/4

4/4

4/4

4/4

%

le/In

sec

kΑ

ELECTRICAL CHARACTERISTICS - Технические характеристики 3150 100 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 430 590 690 770 890 1000 1200 1450 1750 2100 2400 2900 3400 4150 5100 2450 3100 3400 3850 4500 5100 5900 6600 7800 8750 10400 13500 17000 18400 24300 2850 3500 3900 4350 5100 5750 6700 7550 9000 9950 11700 15400 19000 20900 27500 6 6 6 6 6 6 6 6 6 6 6,5 7 7 7 7 2,5 2,3 2 1,8 1,6 1,4 1,3 1,3 1,1 0,9 0,7 0,6 0,6 1,2 46 49 51 53 53 53 55 56 58 59 61 62 63 66 68 59 62 54 66 67 68 69 71 72 73 74 77 79 81 84 97,20 97,75 98,00 98.19 98,32 98,50 98,60 98,74 98,82 98,93 98,99 98,99 98,99 99.11 99,08

Frequency 50 Hz

The a/m technical data are based on:

COMPANY WITH MANAGEMENT SYSTEM CERTIFIED BY DNV

= ISO 9001 = = ISO 14001 =

Max ambient temperature 40 $^{\circ}\text{C}$ HV/LV insulating materials F/F

Winding over temperature 100 °C Efficiency based on losses at 75 °C

Tolerance according to EN 60076

Manufacturing according to Standards

Data and characteristics are not binding and can be changed without notice.

Приведенные технические данные действительны при:

Частота 50 Hz

Максимальная температура окружающей среды 40 °C ВВ/НВ класс изоляции F/F

Повышение температуры обмоток 100 °C

КПД при температуре до 75 °C

Соответствует стандарту EN 60076 Произведено в стандартом EN 60076-11

Технические данные и размеры могут быть изменены производителем без уведомления.

Data: 28/05/2013

Rev. 01

Трансформатор с сухой изоляцией

TES-R

Insulation levels

Класс изоляции

24 kV

Power Мощность	kVA	100	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
шощность				TRAN	SFORME	ER IP00/	Транс	формап	nop IP0	0						
L	mm	1060	1160	1240	1220	1250	1310	1360	1430	1500	1540	1640	1760	1830	1970	2150
W	mm	610	650	640	760	760	760	760	760	910	910	910	910	1220	1320	1320
Н	mm	1140	1220	1230	1380	1430	1480	1580	1620	1740	1790	1920	2080	2260	2250	2270
I	mm	520	520	520	670	670	670	670	670	820	820	820	820	1070	1070	1070
D	mm	100	100	100	125	125	125	125	125	125	125	160	160	200	200	200
Т	mm	40	40	40	40	40	40	40	40	40	40	60	60	70	70	70
Total weight / Общий вес	kg	550	700	850	950	1100	1300	1500	1800	2130	2550	2950	3560	4000	4950	5750
		ENCL	OSURE I	P 21 - 31	/3 ащи	тный к	ожух д	ля траг	нсформ	атора	IP 21 - 3	1				
L1	mm	1720	1720	1720	1790	1790	1900	1900	2000	2000	2120	2120	2300	2300	2670	2670
W1	mm	1050	1050	1050	1100	1100	1120	1120	1190	1190	1260	1260	1390	1390	1400	1400
H1	mm	1530	1530	1530	1760	1760	1960	1960	2090	2090	2260	2260	2490	2550	2610	2610
l1	mm	520	520	520	670	670	670	670	670	820	820	820	820	1070	1070	1070
Total weight / Ofwweight																
Total weight / Общий вес	kg	280	280	280	315	315	315	370	370	370	450	450	450	550	550	550
	ı		30	I			ALS / BB	- HB 666	оды	- 00		100	1	4.4	20	
A	mm		5			0 .5		60		80		100			20 60	
В		,			,	15		20		25						
C	mm	/	/	/	/	/	/	30		40		50			0	
<u> </u>	mm					- 1	3	12						17		6
NOTERMINALS / HB BBODIA																
				/			S / HB	\ ★ ∑								
₩ U	J V				I1		>			HV TERMINALS / ВВ вводы						

Dimensions and weight not binding / Предварительные размеры и вес

TES-RR

Insulation levels

Класс изоляции

7,2 kV 12 kV

Трансформатор с сухой изоляцией

ELECTRICAL CHARACTERISTICS - Технические характеристики																		
Роу Мощн			kVA	100	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
No load	llosses		w	300	410	500	550	650	760	890	1050	1300	1550	1750	2200	2600	3200	3900
Потери на хо			**	000	710	300	330	000	700	000	1000	1000	1000	1750	2200	2000	0200	0000
Load losse Потери короткого за		75°C	w	2300	2950	3400	3800	4100	4800	5400	6600	7800	8900	10800	14500	17000	18500	24500
Load losse	Load losses at 120°C																	
Потери короткого замыкания при 120°C			W	2600	3350	3900	4400	4600	5500	6100	7500	9000	10300	12500	16500	19000	21000	28000
Impedance voltage			%	6	6	6	6	6	6	6	6	6	6,5	6,5	7	7	7	7
Напряжение корс		ния															•	•
No load current			%	1,7	1,5	1,4	1,3	1,2	1,1	1	0,9	0,8	0,8	0,7	0,6	0,5	0,5	0,5
Ток холостого хода Sound pressure level at 1 meter																		
Звуковое давление на расстоянии 1 метр			dBA	40	44	45	46	47	48	49	51	52	54	55 .	56	58 .	59	61
Sound power level			dBA	51	54	55	57	58	59	60	61	64	65	67	68	70	71	73
Уровень шума														·		·		
	Coofi – 1	4/4 3/4	%	97,47 97,92	97,94 98,30	98,09 98,42	98,29 98,59	98,51	98,63 98,86	98,76 98,96	98,80 99,00	98,88 99,06	98,97	99,01 99,17	98,97 99,14	99,03 99,20	99,14 99,28	99,11 99,26
Efficiency	Cosfi = 1	2/4	70	97,92	98,30	98,42	98,81	98,76 98,95	98,86	98,96	99,00	99,06	99,13 99,25	99,17	99,14	99,20	99,28	99,26
		4/4		97,19	97,72	97,88	98,10	98,35	98,48	98,62	98,67	98,75	98,85	98,90	98,85	98,92	99,04	99,01
	Cosfi = 0,9	3/4	%	97,69	98,12	98,24	98,43	98,63	98,73	98,85	98,89	98,96	99,04	99,08	99,05	99,11	99,20	99,18
		2/4		98,09	98,43	98,52	98,68	98,83	98,92	99,01	99,06	99,11	99,17	99,22	99,20	99,24	99,31	99,30
кпд		4/4		96,85	97,44	97,62	97,87	98,15	98,29	98,45	98,50	98,60	98,71	98,76	98,71	98,79	98,93	98,89
	Cosfi = 0,8	3/4	%	97,41	97,89	98,03	98,24	98,46	98,58	98,71	98,76	98,83	98,92	98,97	98,93	99,00	99,10	99,07
		2/4		97,86	98,24	98,34	98,52	98,69	98,79	98,89	98,94	98,99	99,07	99,12	99,10	99,15	99,22	99,21
	Cosfi = 1	4/4		2,454	2,007	1,866	1,688	1,473	1,373	1,254	1,222	1,150	1,097	1,072	1,147	1,091	0,982	1,020
Voltage drop	Cosfi = 0,95	4/4	%	4,019	3,652	3,534	3,383	3,198	3,111	3,008	2,980	2,916	3,026	3,004	3,227	3,178	3,080	3,114
Падение	Cosfi = 0,9	4/4		4,565	4,242	4,137	4,002	3,835	3,756	3,662	3,636	3,578	3,754	3,733	4,012	3,967	3,877	3,908
напряжения	Cosfi = 0,8	4/4		5,212	4,961	4,877	4,768	4,632	4,567	4,488	4,467	4,418	4,682	4,664	5,015	4,976	4,900	4,926
Rush current Пусковой ток			le/ln	14,0	14,0	13,5	13,0	13,0	12,5	12,0	11,5	11,5	11,0	11,0	10,5	10,5	10,0	9,5
Пусковои ток Time costant le/ln			sec.	0,10	0,10	0,11	0,11	0,12	0,13	0,13	0,14	0,15	0,17	0,19	0,22	0,28	0,32	0,38
Время пу	Время пуска le/ln		300.	3,10	0,10	0,11	0,11	0,12	0,10	0,10	0,14	0,13	0,17	0,13	0,22	0,20	0,02	3,00
Short circuit current			kA	2,4	3,8	4,8	6,0	7,6	9,6	12,0	15,2	19,2	22,2	27,8	33,0	41,2	51,6	65,0
Ток короткого	о замыкания																	
İ			A IDA							1	1							

Frequency 50 Hz

The a/m technical data are based on:

COMPANY WITH MANAGEMENT SYSTEM CERTIFIED BY DNV

= ISO 9001= = ISO 14001= Max ambient temperature 40 °C HV/LV insulating materials F/F Winding over temperature 100 °C Efficiency based on losses at 75 °C Tolerance according to EN 60076

Manufacturing according to Standards EN 60076-11

Data and characteristics are not binding and can be changed without notice.

Приведенные технические данные действительны при:

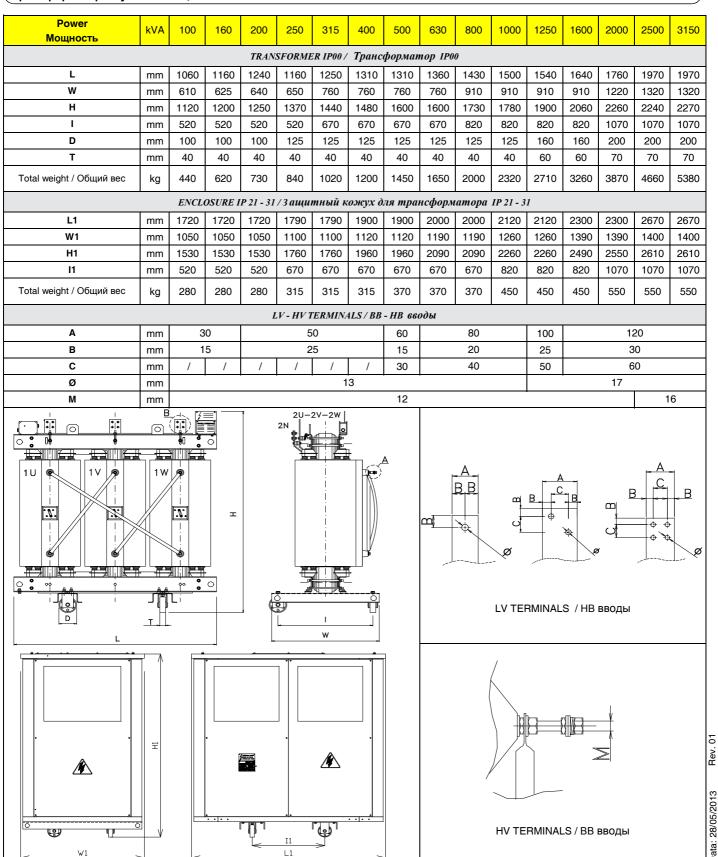
Частота 50 Hz

Максимальная температура окружающей среды 40 °C ВВ/НВ класс изоляции F/F

Повышение температуры обмоток 100 °C

КПД при температуре до 75 °C Соответствует стандарту EN 60076

Произведено в соответствии со стандартом EN 60076-11


Технические данные и размеры могут быть изменены производителем без уведомления.

Data: 28/05/2013

Rev. 01

CAST RESIN TRANSFORMERS TES-RR Insulation levels 7,2 kV Трансформатор с сухой изоляцией 12 kV

Dimensions and weight not binding / Предварительные размеры и вес

TES-RR

Insulation levels

24 kV

Трансформатор с сухой изоляцией

Класс изоляции

	ELECTRICAL CHARACTERISTICS - Технические характеристики																	
Роз Мощн			kVA	100	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
No load	losses		W	350	500	600	650	740	860	1020	1240	1480	1800	2000	2450	2850	3500	4350
Потери на хо								7 10		1020	12.10	1 100	1000	2000	2100	2000	0000	1000
Потери короткого за		75°C	W	2450	3100	3400	3850	4500	5100	5900	6600	7800	8800	10400	13600	17000	18500	24500
Load losse	s at 120°C																	
Потери короткого замыкания при 120°C			W	2900	3500	3900	4350	5100	5800	6700	7600	9000	10000	11700	15500	19000	21000	27800
Impedance voltage			%	6	6	6	6	6	6	6	6	6	6.5	6,5	7	7	7	7
Напряжение корс	эткого замыка	ния											ŕ		٠	•	•	•
	No load current		%	2,2	2,1	1,9	1,7	1,5	1,3	1,2	1,2	1,1	1,0	0,9	0,8	0,7	0,6	0,5
Ток холостого хода Sound pressure level at 1 meter		er																
Звуковое давление на расстоянии 1 метр			dBA	46	49	50	50	51	51	52	52	53	54	55	58	59	61	62
Sound power level			dBA	59	60	61	61	62	62	63	63	64	65	67	68	70 _	72	74 .
Уровень шума		4/4		07.00	07.00	00.04	00.00	00.00	00.50	00.00	00.77	00.05	00.05	00.00	00.01	00.00	00.10	00.00
	Cosfi = 1	4/4 3/4		97,28 97,75	97,80 98,16	98,04 98.35	98,23 98,52	98,36 98,63	98,53 98.77	98,63 98.86	98,77 98,96	98,85 99,03	98,95 99,11	99,02 99,17	99,01	99,02 99,18	99,13 99,26	99,09 99.24
Efficiency	Cosii = 1	2/4	, -	98,11	98,43	98,57	98,73	98,83	98,94	99,01	99,09	99,15	99,21	99,27	99,27	99,30	99,35	99,34
		4/4		96,98	97,56	97,83	98,04	98,19	98,37	98,49	98,64	98,73	98,84	98,91	98,90	98,91	99,03	98,99
	Cosfi = 0,9	3/4	%	97,50	97,96	98,17	98,36	98,48	98,64	98,73	98,85	98,93	99,01	99,08	99,07	99,09	99,18	99,15
		2/4		97,91	98,26	98,41	98,59	98,70	98,83	98,90	98,99	99,06	99,12	99,19	99,19	99,22	99,28	99,27
кпд	Cosfi = 0,8	4/4 3/4	%	96,62 97,20	97,26 97,72	97,56 97,95	97,80 98,16	97,96 98,30	98,17 98,47	98,30 98.57	98,47 98,71	98,57 98,79	98,69 98,89	98,78 98,96	98,76 98,96	98,77 98,98	98,91 99,08	98,87 99,05
	C0SII = 0,0	2/4	70	97,20	98,05	98,22	98,41	98,54	98,68	98,77	98,87	98,94	99,01	99,96	99,09	99,12	99,08	99,05
	Cosfi = 1	4/4		2,600	2,099	1,866	1,708	1,598	1,447	1,353	1,222	1,150	1,087	1,040	1,091	1,091	0,982	1,020
Voltage drop	Cosfi = 0,95	4/4	0/	4,136	3,728	3,534	3,400	3,306	3,176	3,094	2,980	2,916	3,018	2,975	3,178	3,178	3,080	3,114
Падение	Cosfi = 0,9	4/4	%	4,667	4,310	4,137	4,017	3,933	3,815	3,741	3,636	3,578	3,746	3,707	3,967	3,967	3,877	3,908
напряжения	Cosfi = 0,8	4/4		5,289	5,014	4,877	4,780	4,712	4,615	4,554	4,467	4,418	4,675	4,642	4,976	4,976	4,900	4,926
Rush current			le/In	14,0	14,5	14,0	14,0	13,5	13,0	12,5	12,0	12,0	11,5	11,0	11,0	10,5	10,5	10,0
Time costant le/ln			sec.	0,09	0,09	0,10	0,11	0,11	0,12	0,13	0,13	0,14	0,15	0,18	0,20	0,25	0,32	0,35
	Время пуска le/ln													,	·			
Short circuit current			kA	2,4	3,8	4,8	6,0	7,6	9,6	12,0	15,2	19,2	22,2	27,8	33,0	41,2	51,6	65,0
Ток короткого замыкания			all a			1						1	l			l	l	

COMPANY WITH MANAGEMENT SYSTEM CERTIFIED BY DNV

= ISO 9001= = ISO 14001= The a/m technical data are based on:

Frequency 50 Hz

Max ambient temperature 40 °C HV/LV insulating materials F/F Winding over temperature 100 °C

Efficiency based on losses at 75 °C Tolerance according to EN 60076

Manufacturing according to Standards

EN 60076-11

Data and characteristics are not binding and can be changed without notice.

Приведенные технические данные действительны при:

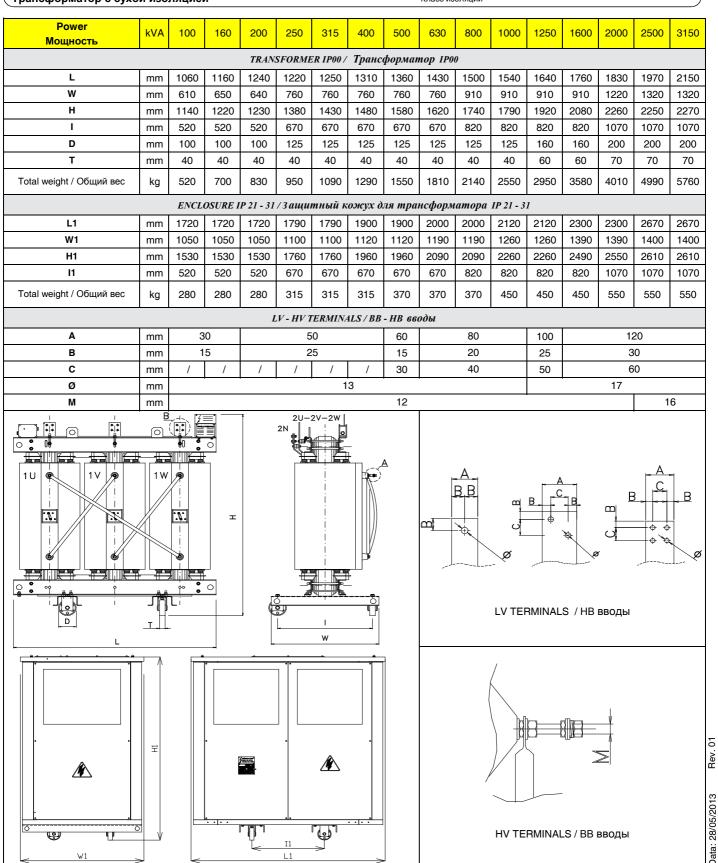
Частота 50 Hz

Максимальная температура окружающей среды 40 °C BB/HB класс изоляции F/F

Повышение температуры обмоток 100 °C

КПД при температуре до 75 °C Соответствует стандарту EN 60076

Произведено в соответствии со стандартом EN 60076-11


стандартом EN 60076-11
Технические данные и размеры могут быть изменены производителем без уведомления.

Data: 28/05/2013

Rev. 01

CAST RESIN TRANSFORMERS TES-RR Трансформатор с сухой изоляцией Трансформатор с сухой изоляцией

Dimensions and weight not binding / Предварительные размеры и вес

Сухие трансформаторы с литой изоляцией HH/HH TRAFO ELETTRO

Стандартный ряд распределительных сухих трансформаторов с литой изоляцией Trafo Elettro - от 50 до 3150 кВА. Специальные трансформаторы возможно изготовить до 20 МВА, с номинальным напряжением до 36 кВ. Вторичные напряжения могут быть любыми по запросу. Также возможно изготовить трансформаторы с двойной первичной и\или вторичной обмоткой.

Ряд сухих трансформаторов с литой изоляцией - от 25 до 16000 кВА, с классом изоляции до 36 кВ. TRAFO ELETTRO Service разрабатывает и производит этот тип трансформаторов с 1970 и накопленный за эти годы опыт позволяет предложить клиенту лучшее решение для любого применения.

Применение

У этого типа трансформатора с воздушной изоляцией применено меньшее количество горючего материала. В частности, они подходят для сред, в которых выделяемая энергия в кКал высока и должен быть снижен риск возникновения огня.

Токоограничивающие реакторы TRAFO ELETTRO

Токоограничивающие реакторы для токов КЗ до 6000 А 36 кВ

Они включены в цепь последовательно и в случае К3 они ограничивают ток до заданного. Как правило, они изготавливаются трехфазными, но также возможна поставка и однофазных. По запросу возможно изготовление маслонаполненных экранированных реакторов с номинальным рядом до 50 MBA.

Заземляющие нейтраль реакторы

Производятся трехфазными, с магнитным сердечником, каждая обмотка соединена в зигзаг. Таким образом возможно напрямую соединять нейтраль с землей. Возможны различные варианты исполнения, в том числе по чертежам Клиента.

Реакторы для специальных применений

TRAFO ELETTRO Service может производить реакторы для любых типов применения, а также по заданию Клиента.

Сервис на объекте TRAFO ELETTRO

TRAFO ELETTRO помогает клиенту в любых его проблемах, все наши представители имеют сервисные центры во всех странах. В России также есть такой сервисный центр.

			I
			_
			_
			1

Сухие трансформаторы с литой изоляцией

Via G.Galilei, 5 - 36071 Tezze d'Arzignano (VI) - Italy TEL.+39 0444 482204 - FAX.+39 0444 483956 - E-mail: info@trafoelettro.com

www.trafoelettro.com